
1/16

Modbus Protocol
modbustools.com/modbus.html

Protocol Description

MODBUS© Protocol is a messaging structure, widely used to establish master-slave

communication between intelligent devices. A MODBUS message sent from a master to a

slave contains the address of the slave, the 'command' (e.g. 'read register' or 'write

register'), the data, and a check sum (LRC or CRC). 

 
Since Modbus protocol is just a messaging structure, it is independent of the underlying

physical layer. It is traditionally implemented using RS232, RS422, or RS485

The Request

 
The function code in the request tells the addressed slave device what kind of action to

perform. The data bytes contains any additional information that the slave will need to

perform the function. For example, function code 03 will request the slave to read holding

registers and respond with their contents. The data field must contain the information

telling the slave which register to start at and how many registers to read. The error check

field provides a method for the slave to validate the integrity of the message contents.

The Response

 
If the slave makes a normal response, the function code in the response is an echo of the

function code in the request. The data bytes contain the data collected by the slave, such

as register values or status. If an error occurs, the function code is modified to indicate

that the response is an error response, and the data bytes contain a code that describes

the error. The error check field allows the master to confirm that the message contents are

valid.

Controllers can be setup to communicate on standard Modbus networks using either of

two transmission modes: ASCII or RTU.

ASCII Mode 

 
When controllers are setup to communicate on a Modbus network using ASCII (American

Standard Code for Information Interchange) mode, each eight-bit byte in a message is

sent as two ASCII characters. The main advantage of this mode is that it allows time

intervals of up to one second to occur between characters without causing an error.

https://www.modbustools.com/modbus.html


2/16

Coding System 
Hexadecimal ASCII printable characters 0 ... 9, A ... F 
Bits per Byte 
1 start bit 
7 data bits, least significant bit sent first 
1 bit for even / odd parity-no bit for no parity 
1 stop bit if parity is used-2 bits if no parity 
Error Checking 
Longitudinal Redundancy Check (LRC) 

RTU Mode 

When controllers are setup to communicate on a Modbus network using RTU (Remote

Terminal Unit) mode, each eight-bit byte in a message contains two four-bit hexadecimal

characters. The main advantage of this mode is that its greater character density allows

better data throughput than ASCII for the same baud rate. Each message must be

transmitted in a continuous stream.

Coding System 
Eight-bit binary, hexadecimal 0 ... 9, A ... F 
Two hexadecimal characters contained in each eight-bit field of the message 
Bits per Byte 
1 start bit 
8 data bits, least significant bit sent first 
1 bit for even / odd parity-no bit for no parity 
1 stop bit if parity is used-2 bits if no parity 
Error Check Field 
Cyclical Redundancy Check (CRC) 

In ASCII mode, messages start with a colon ( : ) character (ASCII 3A hex), and end with a

carriage return-line feed (CRLF) pair (ASCII 0D and 0A hex). 

The allowable characters transmitted for all other fields are hexadecimal 0 ... 9, A ... F.

Networked devices monitor the network bus continuously for the colon character. When

one is received, each device decodes the next field (the address field) to find out if it is the

addressed device. 

Intervals of up to one second can elapse between characters within the message. If a

greater interval occurs, the receiving device assumes an error has occurred. A typical

message frame is shown below.

Start Address Function Data LRC End

: 2 Chars 2 Chars N Chars 2 Chars CR LF

 

RTU Framing 

In RTU mode, messages start with a silent interval of at least 3.5 character times. This is

most easily implemented as a multiple of character times at the baud rate that is being

used on the network (shown as T1-T2-T3-T4 in the figure below). The first field then



3/16

transmitted is the device address.

The allowable characters transmitted for all fields are hexadecimal 0 ... 9, A ... F.

Networked devices monitor the network bus continuously, including during the silent

intervals. When the first field (the address field) is received, each device decodes it to find

out if it is the addressed device.

Following the last transmitted character, a similar interval of at least 3.5 character times

marks the end of the message. A new message can begin after this interval.

The entire message frame must be transmitted as a continuous stream. If a silent interval

of more than 1.5 character times occurs before completion of the frame, the receiving

device flushes the incomplete message and assumes that the next byte will be the address

field of a new message.

Similarly, if a new message begins earlier than 3.5 character times following a previous

message, the receiving device will consider it a continuation of the previous message. This

will set an error, as the value in the final CRC field will not be valid for the combined

messages. A typical message frame is shown below.

Start Address Function Data CRC End

3.5 Char time 8 Bit 8 Bit N * 8Bit 16 Bit 3.5 Char time

Address Field 

The address field of a message frame contains two characters (ASCII) or eight bits (RTU).

The individual slave devices are assigned addresses in the range of 1 ... 247.

Function Field

The Function Code field tells the addressed slave what function to perform.

The following functions are supported by Modbus poll

01 READ COIL STATUS

02 READ INPUT STATUS

03 READ HOLDING REGISTERS

04 READ INPUT REGISTERS

05 WRITE SINGLE COIL

06 WRITE SINGLE REGISTER

15 WRITE MULTIPLE COILS

16 WRITE MULTIPLE REGISTERS

The data field contains the requested or send data.

Contents of the Error Checking Field 

Two kinds of error-checking methods are used for standard Modbus networks. The error

checking field contents depend upon the method that is being used.

ASCII

When ASCII mode is used for character framing, the error-checking field contains two

ASCII characters. The error check characters are the result of a Longitudinal Redundancy

https://www.modbustools.com/modbus.html#Function01
https://www.modbustools.com/modbus.html#function02
https://www.modbustools.com/modbus.html#function03
https://www.modbustools.com/modbus.html#function04
https://www.modbustools.com/modbus.html#function05
https://www.modbustools.com/modbus.html#function06
https://www.modbustools.com/modbus.html#function15
https://www.modbustools.com/modbus.html#function16


4/16

Check (LRC) calculation that is performed on the message contents, exclusive of the

beginning colon and terminating CRLF characters.

The LRC characters are appended to the message as the last field preceding the CRLF

characters.

LRC Example Code

RTU 

When RTU mode is used for character framing, the error-checking field contains a 16-bit

value implemented as two eight-bit bytes. The error check value is the result of a Cyclical

Redundancy Check calculation performed on the message contents. 

The CRC field is appended to the message as the last field in the message. When this is

done, the low-order byte of the field is appended first, followed by the high-order byte.

The CRC high-order byte is the last byte to be sent in the message.

CRC Example Code

Function 01 (01hex) Read Coils

Reads the ON/OFF status of discrete coils in the slave.

Request

The request message specifies the starting coil and quantity of coils to be read.

Example of a request to read 10...22 (Coil 11 to 23) from slave device address 4:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 04 0 4

Function 01 0 1

Starting Address Hi 00 0 0

Starting Address Lo 0A 0 A

Quantity of Coils Hi 00 0 0

Quantity of Coils Lo 0D 0 D

Error Check Lo DD LRC (E 4)

Error Check Hi 98  

Trailer None CR LF

Total Bytes 8 17

 

https://www.modbustools.com/modbus.html#lrc
https://www.modbustools.com/modbus.html#crc


5/16

Response

The coil status response message is packed as one coil per bit of the data field. Status is

indicated as: 1 is the value ON, and 0 is the value OFF. The LSB of the first data byte

contains the coil addressed in the request. The other coils follow toward the high-order

end of this byte and from low order to high order in subsequent bytes. If the returned coil

quantity is not a multiple of eight, the remaining bits in the final data byte will be padded

with zeroes (toward the high-order end of the byte). The byte count field specifies the

quantity of complete bytes of data.

Example of a response to the request:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 04 0 4

Function 01 0 1

Byte Count 02 0 2

Data (Coils 7...10) 0A 0 A

Data (Coils 27...20) 11 1 1

Error Check Lo B3 LRC (D E)

Error Check Hi 50 None

Trailer None CR LF

Total Bytes 7 15

 

Function 02(02hex) Read Discrete Inputs

Reads the ON/OFF status of discrete inputs in the slave.

Request

The request message specifies the starting input and quantity of inputs to be read.

Example of a request to read 10...22 (input 10011 to 10023) from slave device address 4:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 04 0 4

Function 02 0 2



6/16

Starting Address Hi 00 0 0

Starting Address Lo 0A 0 A

Quantity of inputs Hi 00 0 0

Quantity of inputs Lo 0D 0 D

Error Check Lo 99 LRC (E 3)

Error Check Hi 98  

Trailer None CR LF

Total Bytes 8 17

Response

The input status response message is packed as one input per bit of the data field. Status

is indicated as: 1 is the value ON, and 0 is the value OFF. The LSB of the first data byte

contains the input addressed in the request. The other inputs follow toward the high-

order end of this byte and from low order to high order in subsequent bytes. If the

returned input quantity is not a multiple of eight, the remaining bits in the final data byte

will be padded with zeroes (toward the high-order end of the byte). The byte count field

specifies the quantity of complete bytes of data.

Example of a response to the request:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 04 0 4

Function 02 0 2

Byte Count 02 0 2

Data (Inputs 17...10) 0A 0 A

Data (Inputs 27...20) 11 1 1

Error Check Lo B3 LRC (D D)

Error Check Hi 14 None

Trailer None CR LF

Total Bytes 7 15

 

Function 03 (03hex) Read Holding Registers



7/16

Read the binary contents of holding registers in the slave.

Request

The request message specifies the starting register and quantity of registers to be read.

Example of a request to read 0...1 (register 40001 to 40002) from slave device 1:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 01 0 1

Function 03 0 3

Starting Address Hi 00 0 0

Starting Address Lo 00 0 0

Quantity of Registers Hi 00 0 0

Quantity of Registers Lo 02 0 2

Error Check Lo C4 LRC (F A)

Error Check Hi 0B  

Trailer None CR LF

Total Bytes 8 17

 

Response

The register data in the response message are packed as two bytes per register, with the

binary contents right justified within each byte. For each register the first byte contains

the high-order bits, and the second contains the low-order bits.

Example of a response to the request:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 01 0 1

Function 03 0 3

Byte Count 04 0 4

Data Hi 00 0 0

Data Lo 06 0 6



8/16

Data Hi 00 0 0

Data Lo 05 0 5

Error Check Lo DA LRC (E D)

Error Check Hi 31 None

Trailer None CR LF

Total Bytes 8 19

Function 04 (04hex) Read Input Registers

Read the binary contents of input registers in the slave.

Request

The request message specifies the starting register and quantity of registers to be read.

Example of a request to read 0...1 (register 30001 to 30002) from slave device 1:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 01 0 1

Function 04 0

Starting Address Hi 00 0 0

Starting Address Lo 00 0 0

Quantity of Registers Hi 00 0 0

Quantity of Registers Lo 02 0 2

Error Check Lo 71 LRC (F 9)

Error Check Hi CB  

Trailer None CR LF

Total Bytes 8 17

 

Response

The register data in the response message are packed as two bytes per register, with the

binary contents right justified within each byte. For each register the first byte contains

the high-order bits, and the second contains the low-order bits.

Example of a response to the request:



9/16

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 01 0 1

Function 04 0 4

Byte Count 04 0 4

Data Hi 00 0 0

Data Lo 06 0 6

Data Hi 00 0 0

Data Lo 05 0 5

Error Check Lo DB LRC (E C)

Error Check Hi 86 None

Trailer None CR LF

Total Bytes 9 19

 

Function 05 (05hex) Write Single Coil

Writes a single coil to either ON or OFF.

Request

The request message specifies the coil reference to be written. Coils are addressed starting

at zero-coil 1 is addressed as 0.

The requested ON / OFF state is specified by a constant in the request data field. A value

of FF 00 hex requests the coil to be ON. A value of 00 00 requests it to be OFF. All other

values are illegal and will not affect the coil.

Here is an example of a request to write coil 173 ON in slave device 17:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 05 0 5

Coil Address Hi 00 0 0



10/16

Coil Address Lo AC A C

Write Data Hi FF 0 0

Write Data Lo 00 F F

Error Check Lo 4E LRC (3 F)

Error Check Hi 8B  

Trailer None CR LF

Total Bytes 8 17

 

Response

The normal response is an echo of the request, returned after the coil state has been

written.

Example of a response to the request:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 05 0 5

Coil Address Hi 00 0 0

Coil Address Lo AC A C

Write Data Hi FF 0 0

Write Data Lo 00 F F

Error Check Lo 4E LRC (3 F)

Error Check Hi 8B  

Trailer None CR LF

Total Bytes 8 17

 

Function 06 (06hex) Write Single Register

Writes a value into a single holding register.



11/16

Request

The request message specifies the register reference to be Written. Registers are

addressed starting at zero-register 1 is addressed as 0.

The requested Write value is specified in the request data field. Here is an example of a

request to Write register 40002 to 00 03 hex in slave device 17.

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 06 0 6

Register Address Hi 00 0 0

Register Address Lo 01 0 1

Write Data Hi 00 0 0

Write Data Lo 03 0 3

Error Check Lo 9A LRC (E 5)

Error Check Hi 9B  

Trailer None CR LF

Total Bytes 8 17

 

Response

The normal response is an echo of the request, returned after the register contents have

been written.

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 06 0 6

Coil Address Hi 00 0 0

Coil Address Lo 01 0 1

Write Data Hi 00 0 0

Write Data Lo 03 0 3

Error Check Lo 9A LRC (E 5)



12/16

Error Check Hi 9B  

Trailer None CR LF

Total Bytes 8 17

 

Function 15 (0Fhex) Write Multiple Coils

Writes each coil in a sequence of coils to either ON or OFF.

Request

The request message specifies the coil references to be written. Coils are addressed

starting at zero-coil 1 is addressed as 0.

The requested ON / OFF states are specified by contents of the request data field. A

logical 1 in a bit position of the field requests the corresponding coils to be ON. A logical 0

requests it to be OFF.

Below is an example of a request to write a series of ten coils starting at coil 20 (addressed

as 19, or 13 hex) in slave device 17.

The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary). The

binary bits correspond to the coils in the following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Coil: 27 26 25 24 23 22 21 20 - - - - - - 29 28

The first byte transmitted (CD hex) addresses coils 27 ... 20, with the least significant bit

addressing the lowest coil (20) in this set.

The next byte transmitted (01 hex) addresses coils 29 and 28, with the least significant bit

addressing the lowest coil (28) in this set. Unused bits in the last data byte should be zero-

filled.

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 0F 0 F

Coil Address Hi 00 0 0

Coil Address Lo 13 1 3

Quantity of Coils Hi 00 0 0



13/16

Quantity of Coils Lo 0A 0 A

Byte Count 02 0 2

Write Data Hi CD C D

Write Data Lo 01 0 1

Error Check Lo BF LRC (F 3)

Error Check Hi 0B  

Trailer None CR LF

Total Bytes 11 23

 

Response

The normal response returns the slave address, function code, starting address, and

number of coils written. Here is an example of a response to the request shown above

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 0F 0 F

Coil Address Hi 00 0 0

Coil Address Lo 13 1 3

Quantity of Coils Hi 00 0 0

Quantity of Coils Lo 0A 0 A

Error Check Lo 26 LRC (C 3)

Error Check Hi 99  

Trailer None CR LF

Total Bytes 8 17

 

Function 16 (10hex) Write Multiple Registers

Writes values into a sequence of holding registers



14/16

Request

The request message specifies the register references to be written. Registers are

addressed starting at zero-register 1 is addressed as 0.

The requested write values are specified in the request data field. Data is packed as two

bytes per register.

Here is an example of a request to write two registers starting at 40002 to 00 0A and 01

02 hex, in slave device 17:

Field Name RTU (hex) ASCII Characters

Header None : (Colon)

Slave Address 11 1 1

Function 10 1 0

Starting Address Hi 00 0 0

Starting Address Lo 01 0 1

Quantity of Registers Hi 00 0 0

Quantity of Registers Lo 02 0 2

Byte Count 04 0 4

Data Hi 00 0 0

Data Lo 0A 0 A

Data Hi 01 0 1

Data Lo 02 0 2

Error Check Lo C6 LRC (C B)

Error Check Hi F0  

Trailer None CR LF

Total Bytes 13 23

 

Response

The normal response returns the slave address, function code, starting address, and

quantity of registers written. Here is an example of a response to the request shown

above.

Field Name RTU (hex) ASCII Characters

Header None : (Colon)



15/16

Slave Address 11 1 1

Function 10 1 0

Starting Address Hi 00 0 0

Starting Address Lo 01 0 1

Quantity of Registers Hi 00 0 0

Quantity of Registers Lo 02 0 2

Error Check Lo 12 LRC (D C)

Error Check Hi 98  

Trailer None CR LF

Total Bytes 8 17

 

LRC Example Code

This function is an example how to calculate a LRC BYTE using the C language.

BYTE LRC (BYTE *nData, WORD wLength)
 {

 BYTE nLRC = 0 ; // LRC char initialized

for (int i = 0; i < wLength; i++)
 nLRC += *nData++;

return (BYTE)(-nLRC);

} // End: LRC

CRC Example Code

This function is an example how to calculate a CRC word using the C language.



16/16

WORD CRC16 (const BYTE *nData, WORD wLength) 
{ 
static const WORD wCRCTable[] = { 
   0X0000, 0XC0C1, 0XC181, 0X0140, 0XC301, 0X03C0, 0X0280, 0XC241, 
   0XC601, 0X06C0, 0X0780, 0XC741, 0X0500, 0XC5C1, 0XC481, 0X0440, 
   0XCC01, 0X0CC0, 0X0D80, 0XCD41, 0X0F00, 0XCFC1, 0XCE81, 0X0E40, 
   0X0A00, 0XCAC1, 0XCB81, 0X0B40, 0XC901, 0X09C0, 0X0880, 0XC841, 
   0XD801, 0X18C0, 0X1980, 0XD941, 0X1B00, 0XDBC1, 0XDA81, 0X1A40, 
   0X1E00, 0XDEC1, 0XDF81, 0X1F40, 0XDD01, 0X1DC0, 0X1C80, 0XDC41, 
   0X1400, 0XD4C1, 0XD581, 0X1540, 0XD701, 0X17C0, 0X1680, 0XD641, 
   0XD201, 0X12C0, 0X1380, 0XD341, 0X1100, 0XD1C1, 0XD081, 0X1040, 
   0XF001, 0X30C0, 0X3180, 0XF141, 0X3300, 0XF3C1, 0XF281, 0X3240, 
   0X3600, 0XF6C1, 0XF781, 0X3740, 0XF501, 0X35C0, 0X3480, 0XF441, 
   0X3C00, 0XFCC1, 0XFD81, 0X3D40, 0XFF01, 0X3FC0, 0X3E80, 0XFE41, 
   0XFA01, 0X3AC0, 0X3B80, 0XFB41, 0X3900, 0XF9C1, 0XF881, 0X3840, 
   0X2800, 0XE8C1, 0XE981, 0X2940, 0XEB01, 0X2BC0, 0X2A80, 0XEA41, 
   0XEE01, 0X2EC0, 0X2F80, 0XEF41, 0X2D00, 0XEDC1, 0XEC81, 0X2C40, 
   0XE401, 0X24C0, 0X2580, 0XE541, 0X2700, 0XE7C1, 0XE681, 0X2640, 
   0X2200, 0XE2C1, 0XE381, 0X2340, 0XE101, 0X21C0, 0X2080, 0XE041, 
   0XA001, 0X60C0, 0X6180, 0XA141, 0X6300, 0XA3C1, 0XA281, 0X6240, 
   0X6600, 0XA6C1, 0XA781, 0X6740, 0XA501, 0X65C0, 0X6480, 0XA441, 
   0X6C00, 0XACC1, 0XAD81, 0X6D40, 0XAF01, 0X6FC0, 0X6E80, 0XAE41, 
   0XAA01, 0X6AC0, 0X6B80, 0XAB41, 0X6900, 0XA9C1, 0XA881, 0X6840, 
   0X7800, 0XB8C1, 0XB981, 0X7940, 0XBB01, 0X7BC0, 0X7A80, 0XBA41, 
   0XBE01, 0X7EC0, 0X7F80, 0XBF41, 0X7D00, 0XBDC1, 0XBC81, 0X7C40, 
   0XB401, 0X74C0, 0X7580, 0XB541, 0X7700, 0XB7C1, 0XB681, 0X7640, 
   0X7200, 0XB2C1, 0XB381, 0X7340, 0XB101, 0X71C0, 0X7080, 0XB041, 
   0X5000, 0X90C1, 0X9181, 0X5140, 0X9301, 0X53C0, 0X5280, 0X9241, 
   0X9601, 0X56C0, 0X5780, 0X9741, 0X5500, 0X95C1, 0X9481, 0X5440, 
   0X9C01, 0X5CC0, 0X5D80, 0X9D41, 0X5F00, 0X9FC1, 0X9E81, 0X5E40, 
   0X5A00, 0X9AC1, 0X9B81, 0X5B40, 0X9901, 0X59C0, 0X5880, 0X9841, 
   0X8801, 0X48C0, 0X4980, 0X8941, 0X4B00, 0X8BC1, 0X8A81, 0X4A40, 
   0X4E00, 0X8EC1, 0X8F81, 0X4F40, 0X8D01, 0X4DC0, 0X4C80, 0X8C41, 
   0X4400, 0X84C1, 0X8581, 0X4540, 0X8701, 0X47C0, 0X4680, 0X8641, 
   0X8201, 0X42C0, 0X4380, 0X8341, 0X4100, 0X81C1, 0X8081, 0X4040 }; 
 
BYTE nTemp; 
WORD wCRCWord = 0xFFFF; 
 
   while (wLength--) 
   { 
      nTemp = *nData++ ^ wCRCWord; 
      wCRCWord >>= 8; 
      wCRCWord  ^= wCRCTable[nTemp]; 
   } 
   return wCRCWord;

} // End: CRC16


